3.339 \(\int \frac {1}{x (d+e x) (a+c x^2)^{3/2}} \, dx\)

Optimal. Leaf size=147 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {e (a e+c d x)}{a d \sqrt {a+c x^2} \left (a e^2+c d^2\right )}+\frac {e^3 \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{d \left (a e^2+c d^2\right )^{3/2}}+\frac {1}{a d \sqrt {a+c x^2}} \]

[Out]

e^3*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))/d/(a*e^2+c*d^2)^(3/2)-arctanh((c*x^2+a)^(1/2)/a^
(1/2))/a^(3/2)/d+1/a/d/(c*x^2+a)^(1/2)-e*(c*d*x+a*e)/a/d/(a*e^2+c*d^2)/(c*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.409, Rules used = {961, 266, 51, 63, 208, 741, 12, 725, 206} \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{a^{3/2} d}-\frac {e (a e+c d x)}{a d \sqrt {a+c x^2} \left (a e^2+c d^2\right )}+\frac {e^3 \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{d \left (a e^2+c d^2\right )^{3/2}}+\frac {1}{a d \sqrt {a+c x^2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

1/(a*d*Sqrt[a + c*x^2]) - (e*(a*e + c*d*x))/(a*d*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) + (e^3*ArcTanh[(a*e - c*d*x)
/(Sqrt[c*d^2 + a*e^2]*Sqrt[a + c*x^2])])/(d*(c*d^2 + a*e^2)^(3/2)) - ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]]/(a^(3/2)
*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 741

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> -Simp[((d + e*x)^(m + 1)*(a*e + c*d*x)*(
a + c*x^2)^(p + 1))/(2*a*(p + 1)*(c*d^2 + a*e^2)), x] + Dist[1/(2*a*(p + 1)*(c*d^2 + a*e^2)), Int[(d + e*x)^m*
Simp[c*d^2*(2*p + 3) + a*e^2*(m + 2*p + 3) + c*e*d*(m + 2*p + 4)*x, x]*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a
, c, d, e, m}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntQuadraticQ[a, 0, c, d, e, m, p, x]

Rule 961

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] && ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {1}{x (d+e x) \left (a+c x^2\right )^{3/2}} \, dx &=\int \left (\frac {1}{d x \left (a+c x^2\right )^{3/2}}-\frac {e}{d (d+e x) \left (a+c x^2\right )^{3/2}}\right ) \, dx\\ &=\frac {\int \frac {1}{x \left (a+c x^2\right )^{3/2}} \, dx}{d}-\frac {e \int \frac {1}{(d+e x) \left (a+c x^2\right )^{3/2}} \, dx}{d}\\ &=-\frac {e (a e+c d x)}{a d \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x (a+c x)^{3/2}} \, dx,x,x^2\right )}{2 d}-\frac {e \int \frac {a e^2}{(d+e x) \sqrt {a+c x^2}} \, dx}{a d \left (c d^2+a e^2\right )}\\ &=\frac {1}{a d \sqrt {a+c x^2}}-\frac {e (a e+c d x)}{a d \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 a d}-\frac {e^3 \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{d \left (c d^2+a e^2\right )}\\ &=\frac {1}{a d \sqrt {a+c x^2}}-\frac {e (a e+c d x)}{a d \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}+\frac {\operatorname {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{a c d}+\frac {e^3 \operatorname {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{d \left (c d^2+a e^2\right )}\\ &=\frac {1}{a d \sqrt {a+c x^2}}-\frac {e (a e+c d x)}{a d \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}+\frac {e^3 \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{d \left (c d^2+a e^2\right )^{3/2}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{a^{3/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.17, size = 132, normalized size = 0.90 \[ \frac {-\frac {e (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )}+\frac {e^3 \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{\left (a e^2+c d^2\right )^{3/2}}+\frac {\, _2F_1\left (-\frac {1}{2},1;\frac {1}{2};\frac {c x^2}{a}+1\right )}{a \sqrt {a+c x^2}}}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(d + e*x)*(a + c*x^2)^(3/2)),x]

[Out]

(-((e*(a*e + c*d*x))/(a*(c*d^2 + a*e^2)*Sqrt[a + c*x^2])) + (e^3*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 + a*e^2]*Sq
rt[a + c*x^2])])/(c*d^2 + a*e^2)^(3/2) + Hypergeometric2F1[-1/2, 1, 1/2, 1 + (c*x^2)/a]/(a*Sqrt[a + c*x^2]))/d

________________________________________________________________________________________

fricas [B]  time = 1.55, size = 1325, normalized size = 9.01 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

[1/2*((a^2*c*e^3*x^2 + a^3*e^3)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*
e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) + (a*c^2*d^4 + 2*a^
2*c*d^2*e^2 + a^3*e^4 + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)*x^2)*sqrt(a)*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*s
qrt(a) + 2*a)/x^2) + 2*(a*c^2*d^4 + a^2*c*d^2*e^2 - (a*c^2*d^3*e + a^2*c*d*e^3)*x)*sqrt(c*x^2 + a))/(a^3*c^2*d
^5 + 2*a^4*c*d^3*e^2 + a^5*d*e^4 + (a^2*c^3*d^5 + 2*a^3*c^2*d^3*e^2 + a^4*c*d*e^4)*x^2), 1/2*(2*(a^2*c*e^3*x^2
 + a^3*e^3)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e^2
+ (c^2*d^2 + a*c*e^2)*x^2)) + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4 + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e^4)
*x^2)*sqrt(a)*log(-(c*x^2 - 2*sqrt(c*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*(a*c^2*d^4 + a^2*c*d^2*e^2 - (a*c^2*d^3*
e + a^2*c*d*e^3)*x)*sqrt(c*x^2 + a))/(a^3*c^2*d^5 + 2*a^4*c*d^3*e^2 + a^5*d*e^4 + (a^2*c^3*d^5 + 2*a^3*c^2*d^3
*e^2 + a^4*c*d*e^4)*x^2), 1/2*(2*(a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4 + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e
^4)*x^2)*sqrt(-a)*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + (a^2*c*e^3*x^2 + a^3*e^3)*sqrt(c*d^2 + a*e^2)*log((2*a*c*
d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^2*d^2 + a*c*e^2)*x^2 + 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))
/(e^2*x^2 + 2*d*e*x + d^2)) + 2*(a*c^2*d^4 + a^2*c*d^2*e^2 - (a*c^2*d^3*e + a^2*c*d*e^3)*x)*sqrt(c*x^2 + a))/(
a^3*c^2*d^5 + 2*a^4*c*d^3*e^2 + a^5*d*e^4 + (a^2*c^3*d^5 + 2*a^3*c^2*d^3*e^2 + a^4*c*d*e^4)*x^2), ((a^2*c*e^3*
x^2 + a^3*e^3)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a^2*e
^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (a*c^2*d^4 + 2*a^2*c*d^2*e^2 + a^3*e^4 + (c^3*d^4 + 2*a*c^2*d^2*e^2 + a^2*c*e
^4)*x^2)*sqrt(-a)*arctan(sqrt(-a)/sqrt(c*x^2 + a)) + (a*c^2*d^4 + a^2*c*d^2*e^2 - (a*c^2*d^3*e + a^2*c*d*e^3)*
x)*sqrt(c*x^2 + a))/(a^3*c^2*d^5 + 2*a^4*c*d^3*e^2 + a^5*d*e^4 + (a^2*c^3*d^5 + 2*a^3*c^2*d^3*e^2 + a^4*c*d*e^
4)*x^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Erro
r: Bad Argument Type

________________________________________________________________________________________

maple [B]  time = 0.01, size = 318, normalized size = 2.16 \[ -\frac {c e x}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, a}+\frac {e^{2} \ln \left (\frac {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\frac {2 a \,e^{2}+2 c \,d^{2}}{e^{2}}+2 \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, d}-\frac {e^{2}}{\left (a \,e^{2}+c \,d^{2}\right ) \sqrt {-\frac {2 \left (x +\frac {d}{e}\right ) c d}{e}+\left (x +\frac {d}{e}\right )^{2} c +\frac {a \,e^{2}+c \,d^{2}}{e^{2}}}\, d}-\frac {\ln \left (\frac {2 a +2 \sqrt {c \,x^{2}+a}\, \sqrt {a}}{x}\right )}{a^{\frac {3}{2}} d}+\frac {1}{\sqrt {c \,x^{2}+a}\, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(e*x+d)/(c*x^2+a)^(3/2),x)

[Out]

1/a/d/(c*x^2+a)^(1/2)-1/d/a^(3/2)*ln((2*a+2*(c*x^2+a)^(1/2)*a^(1/2))/x)-1/d/(a*e^2+c*d^2)*e^2/(-2*(x+d/e)*c*d/
e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2)-e/(a*e^2+c*d^2)/a/(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2
)*c*x+1/d/(a*e^2+c*d^2)*e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((-2*(x+d/e)*c*d/e+2*(a*e^2+c*d^2)/e^2+2*((a*e^2+c*d^2
)/e^2)^(1/2)*(-2*(x+d/e)*c*d/e+(x+d/e)^2*c+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (c x^{2} + a\right )}^{\frac {3}{2}} {\left (e x + d\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)/(c*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((c*x^2 + a)^(3/2)*(e*x + d)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{x\,{\left (c\,x^2+a\right )}^{3/2}\,\left (d+e\,x\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + c*x^2)^(3/2)*(d + e*x)),x)

[Out]

int(1/(x*(a + c*x^2)^(3/2)*(d + e*x)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{x \left (a + c x^{2}\right )^{\frac {3}{2}} \left (d + e x\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(e*x+d)/(c*x**2+a)**(3/2),x)

[Out]

Integral(1/(x*(a + c*x**2)**(3/2)*(d + e*x)), x)

________________________________________________________________________________________